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Abstract
1.	 With the advent of technology for data gathering and storage, opportunistic citi-

zen science data are proliferating. Species distribution models (SDMs) aim to use 
species occurrence or abundance for ecological insights, prediction and manage-
ment. We analysed a massive opportunistic dataset with over 100,000 records 
of incidental shipboard observations of marine mammals. Our overall goal was to 
create maps of species density from massive opportunistic data by using spatial 
regression for count data with an effort offset. We illustrate the method with two 
marine mammals in the Gulf of Alaska and Bering Sea.

2.	 We counted the total number of animals in 11,424 hexagons based on presence-
only data. To decrease bias, we first estimated a spatial density surface for ship-
days, which was our proxy variable for effort. We used spatial considerations to 
create pseudo-absences, and left some hexagons as missing values. Next, we cre-
ated SDMs that used modelled effort to create pseudo-absences, and included 
the effort surface as an offset in a second stage analysis of two example species, 
northern fur seals and Steller sea lions.

3.	 For both effort and species counts, we used spatial count regression with random 
effects that had a multivariate normal distribution with a conditional autoregres-
sive (CAR) covariance matrix, providing 2.5  million Markov chain Monte Carlo 
(MCMC) samples (1,000 were retained) from the posterior distribution. We used a 
novel MCMC scheme that maintained sparse precision matrices for observed and 
missing data when batch sampling from the multivariate normal distribution. We 
also used a truncated normal distribution to stabilize estimates, and used a look-
up table for sampling the autocorrelation parameter. These innovations allowed us 
to draw several million samples in just a few hours.

4.	 From the posterior distributions of the SDMs, we computed two functions of 
interest. We normalized the SDMs and then applied an overall abundance esti-
mate obtained from the literature to derive spatially explicit abundance estimates, 
especially within subsetted areas. We also created ‘certain hotspots’ that scaled 
local abundance by standard deviation and using thresholds. Hexagons with val-
ues above a threshold were deemed as hotspots with enough evidence to be cer-
tain about them.
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1  | INTRODUC TION

Natural resource surveys conducted with a structured sampling 
design are the preferred method for most ecological assessments 
because they provide results with the highest levels of confidence 
for the species or system of interest. However, more recently, cit-
izen science efforts are being incorporated into scientific research, 
including data collection, analyses and interpretation (Miller-Rushing 
et al., 2012). Species distribution models (SDMs) (Elith and Leathwick, 
2009; Guisan et al., 2013), which aim to use species occurrence or 
abundance for ecological insights and prediction, are as fundamental 
as the definition of ecology itself (Krebs, 1972). At the intersection 
of citizen science and SDMs are opportunistic datasets of species 
occurrence/abundance (Soroye et al., 2018) and analytical methods 
(Elith et al., 2006) that are rapidly growing (Lukyanenko et al., 2020; 
Renner et al., 2015). Our overall goal is to create maps of species 
density from massive opportunistic datasets by using spatial regres-
sion for count data with an effort offset.

Most citizen science data are obtained without a formal sampling 
design, and hence, according to Kelling et al. (2019), there is no ‘fully 
statistically defensible way of accounting for the biases inherent in 
the data collection’. Statistical bias occurs when the expected value 
of a statistical technique is different from the true quantity that it is 
estimating. A sampling design controls the distribution of observa-
tion and measurement effort, which generally allows for unbiased 
estimates. For example, an unbiased estimator for a population total, 
�, introduced by Horvitz and Thompson (1952), is,

where yi, i = 1, 2, …, N, is a value from N population units, �i is the 
probability that unit i was included in the sample, n (< N) is sample size 
and � is the sum of {yi} over all N sample units. The {�i} are proba-
bilities, but it is interesting to view them as the ‘effort’ to include an 
observation, which is sufficient for unbiased estimation.

Also consider Poisson regression for rates. We often have counts 
that need to be put on an equal basis with other counts. For example, 
the number of diseases among a county population, the number of 
animals per geographic area or the number of manufacturing errors 
per unit time. Let yi be the count, then yi∕�i is the rate (diseases per 
person, animals per area or manufacturing errors per time), where 
here we use �i to be county population, geographic area and time re-
spectively. We assume that yi is the result of a random variable, Yi, and 
a reasonable model is g(E[Yi]∕�i) = x�

i
�, where xi is a vector of covari-

ates associated with the ith observation, � is a vector of regression 
parameters and g( ⋅ ) is a link function that keeps counts positive. 
For most count distributions (e.g. Poisson, negative binomial, etc.), 

we model the log of the mean as linear, so log(E[Yi]∕�i) = x�
i
�, where 

the distribution provides the error terms. The value �i is fixed, so we 
move the denominator of the rate to the right of the equal sign,

and log(�i) is known as the ‘offset’, which can be considered as another 
covariate with known regression coefficient equal to one.

In both Equations  1 and 2 we used notation �i to make the 
connection that dividing by a probability, an area or some proxy 
to effort, is needed; without {�i}, we do not know how to prop-
erly weight {yi} to construct an unbiased estimator. Citizen sci-
ence data, where observations are collected opportunistically, 
often lack information on effort, which is a main source of bias 
(Bird et al., 2014). Note that going from �i in the denominator, to 
log(�i) as an offset, Equation 2, requires that it be a constant (non-
random) for each i.

There are now many review articles for SDMs, e.g., (Araújo et al., 
2019; Austin, 2007; Elith and Leathwick, 2009; Hefley and Hooten, 
2016; Robinson et al., 2017). Data types might be counts, presence–
absence or presence-only (Hefley and Hooten, 2016). Models can be 
primarily focused on estimating relationships to covariates, similar 
to the basic ecological idea of a niche (Elith and Leathwick, 2009; 
Soberón, 2007), and/or focused on prediction in space (Austin, 
2002; Elith and Leathwick, 2009). There is an uneasy relationship 
between models formed in the covariate (niche) space and coordi-
nate (geographic) space (Randin et al., 2006), and here we will focus 
purely on geographic space.

One of the most popular SDM methods is MAXENT (Phillips 
et al., 2006), based on maximum entropy modelling, which uses 
covariates in a spatially explicit grid, and models the presence/ab-
sence of species in the grid. This is equivalent to Poisson regression 
(Renner and Warton, 2013), and there are further connections to 
spatial point processes. An inhomogeneous spatial point process 
that is aggregated to plots with nonzero areas leads to Equation 2 
(Warton and Shepherd, 2010), where the offset can allow for un-
equal areas. We will stay in the grid framework. It is also possible to 
add a spatial random error term (Guélat and Kéry, 2018), which we 
will feature in our model development below.

When citizen science data consist of presence-only, or only non-
zero counts, researchers have often created pseudo-absences, or 
zeros in the data, in an attempt to model where individuals do not 
occur (Conn et al., 2015a; Pearce and Boyce, 2006). A simple ap-
proach is to create zeros at random from all plots other than those 
with observed values (Stockwell and Peterson, 2002), but better ap-
proaches correct for sampling bias (Conn et al., 2017; Phillips et al., 
2009) and include case–control methods (Fithian and Hastie, 2014) 
and local background sampling (Daniel et al., 2020), among others. 

(1)�̂ =

n∑

i=1

yi∕�i ,

(2)log(E[Yi])= log(�i)+x
�
i
� ,

K E Y W O R D S

conditional autoregressive, density models, marine mammals, opportunistic data, species 
distribution models
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In what follows, we will propose new ideas for creating pseudo-
absences based on spatial considerations.

1.1 | Objectives

Our overall objective is to develop a new approach to species 
distribution models based exclusively on ideas motivated by spa-
tial autocorrelation for count data from gridded plots. Our spe-
cific objectives are to (a) use spatial count regression to develop 
models for effort, (b) develop spatial count regression SDMs that 
include effort, (c) provide novel considerations for creating zeros 
based on spatial autocorrelation rather than covariates, (d) out-
line a novel Markov Chain Monte Carlo (MCMC) approach for 
these data and models, (e) combine a normalized SDM with a 
separate species abundance estimate to provide spatially explicit 
abundance estimates and (f) show several useful outcomes that 
can be provided by computing on the posterior distribution of 
the SDMs.

1.2 | Motivating example

A platforms of opportunity (POP) dataset of marine mammal 
sightings, predominantly from ships, including National Oceanic 
and Atmospheric Administration (NOAA), U.S. Coast Guard, Navy, 
fishing, research and tourist vessels, was collected from 1958 
to 2016, containing 109,465 records. Data collection and qual-
ity control were described in Himes Boor and Small (2012). Each 
record in the POP dataset was a marine mammal sighting event, 
which was the observation of one or more individuals of a sin-
gle species, and also included date, latitude and longitude, and 
estimated number of animals. Sightings were contributed to the 
database by individuals with training and experience that ranged 
from professional, experienced biologists with extensive knowl-
edge of species identification to members of the public with little 
or no training.

Our study area consisted of the Bering Sea and Gulf of Alaska, 
situated between Alaska (United States) and Siberia (Russia) 
(Figure  1a). Additionally, we were especially interested in marine 
mammal density within the dashed area in the Gulf of Alaska. This 
is a Density Extent Area (DEA) where, within a much smaller area 
called the Temporary Maritime Activities Area (TMAA), the U.S. 
Navy conducts activity simulations, including acoustic signals that 
may be harmful to marine mammals. Environmental impacts on ma-
rine mammals are required by law. We gridded the study area into 
N = 11,424 hexagons, with a close-up provided in Figure 1b. One 
goal was to provide marine mammal density surfaces within the 
whole DEA for further subsetting as needed.

Within the study area, we considered northern fur seal 
Callorhinus ursinus and Steller sea lion Eumetopias jubatus counts 
from the POP dataset, as each illustrated different results. Because 
both species are seasonally migratory, we subsetted the data to 

the months from May to September, which contained most of the 
data. These data, from 1958 to 2000, were analysed by Himes 
Boor and Small (2012) with a non-spatial model, and we borrowed 
their idea of a ship-day. We will use our data twice; once to esti-
mate effort, and a second time to model species densities while 
accounting for effort. The basic idea is to use all of the data, for 
all species, as a variable for effort, before analysing any particular 
species. However, any particular species is obviously included in 
the effort variable, causing undesirable dependence between the 
two variables. A ship-day was defined as the presence of one or 
more marine mammal observations from a single ship on a single 
day, and ship-days were counted by hexagon (Figure 2a). We used 
ship-days, rather than counting the total number of animals per 
hexagon, in order to uncorrelate, as much as possible, the mod-
elling of effort (ship-days) from that of any single species (Himes 
Boor and Small, 2012). A ship-day is a presence, rather than a 
count, and these are summed when a hexagon is visited multiple 
times. Hence, we assumed that ship-days were proportional to 
effort, and essentially independent of total counts of any single 
species. Notice that some hexagons have missing data, which may 
be due to lack of observed animals, or because a ship never visited 

F I G U R E  1   Study area. (a) Data were taken from the Bering Sea 
and Gulf of Alaska, shown by the light grey shade. The study area 
was gridded with 11,424 hexagons, but resolution is insufficient to 
plot them all. The white rectangular inset allows for more detail. 
The polygon with a dashed black line in the Gulf of Alaska is a 
Density Extent Area (DEA) used by the U.S. Navy. (b) A close-up of 
the white rectangular inset, showing hexagonal sample units, each 
of which was approximately 289 km2

Alaska

Bering Sea Gulf of Alaska

(a)

(b)
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the polygon, and the effort data will require spatial interpolation 
and smoothing, just as we will do for species-specific counts.

The numbers of ship-days (Figure 2a) show a clear sampling bias, 
and it is not surprising given shipping routes and other activities by 
various vessels. Many records are from NOAA ships, whose mis-
sion includes ocean charting and research on fish and marine mam-
mals, explaining the dense effort in certain areas. The total counts 
per hexagon for northern fur seals and Steller sea lions are shown 
in Figures  2b and c respectively. The problem is clear when com-
paring Figures 2a and b or c. High counts of northern fur seals and 
Steller sea lions might be due to high effort, and if either were not 
counted in a hexagon, it may be due to lack of animals, or lack of 
effort. However, if we assume that ship-days are proportional to ef-
fort, then we can adjust for it.

2  | MATERIAL S AND METHODS

We illustrate the methods using the motivating example in 
Section 1.2, and use terminology like ‘ship-days’ to be concrete, but 
it is just a surrogate for any variable on effort. Likewise, we will use 
‘animals’ as the count variable, but these could be any count variable.

2.1 | Models

Consider a spatial count regression, where the latent spatial error is 
multivariate normal with a covariance matrix specified by a condi-
tional autoregressive (CAR) structure e.g., (Ver Hoef et al., 2018). Let 
c = (C1, C2, …, CN) be a vector of count random variables for ship-
days indexed by N total hexagons in Figure 1b. We assume

where �0 is an intercept term, r is a vector of spatially autocorrelated 
random effects, and [a|b] indicates a conditional distribution where 
random variable(s) a depends on b, and Poi(�) is a Poisson distribution 
with mean vector �. Let [r |�2

e
, �e] = MVNCAR(0, �e) be spatial random 

effects where MVNCAR is a zero-mean multivariate normal distribution 
with covariance matrix �e = �2

e
(I − �eWe)

− 1Me structured as a CAR 
model (Besag, 1974). The matrix M is diagonal, and W is sparse, having 
non-zero values only for neighbouring indexes. That is, in general (for 
non-edge hexagons), each row of W has six non-zero values (interior 
hexagons in Figure 1b have six neighbouring cells). For the non-zero 
values, we used row standardization (Ver Hoef et al., 2018). By consid-
ering flat priors for −∞ < 𝛼0 < ∞, 0 < 𝜎2

e
< ∞, −∞ < 𝜈e < ∞, and 

0 < 𝜌e < 1, we obtain the posterior distribution [r, �0, �e , �2e |c]. The 
choice of flat priors was a pragmatic one, and we had no prior infor-
mation on these parameters. If there is prior information, for example, 
from previously fit models or expert information, the model can be 
easily modified to accommodate the priors.

In practice, we use MCMC methods to sample from the posterior 
distribution [r, �0, �e , �2e |c], which also provides a sample from the 
posterior distribution of [e |c], where e = exp(�0 + r) is the modelled 
effort in ship-days back on the nominal scale. More details on our 
MCMC methods are given below, and in the Supplementary Material.

Now, let the count of the species of interest (in our motivating 
example, i.e. either northern fur seals or Steller sea lions) be a vector 
of random variables y = (Y1, Y2, …, YN) with the same indexes as c 
from the hexagons in Figure 1b. We assume

Here, [z |�2
z
, �z] = MVNCAR(0, �z) is a vector of spatial random effects, 

Zi, with covariance matrix �z = �2
z
(I − �zWz)

− 1Mz structured as a 
CAR model. In Equation 4log(e) is an offset that adjusts for effort. Note 
that we have adopted the recommendation of Warton et al. (2013) by 
modelling the observer bias first (e), and then condition on it to model 
the species distribution. Thus, even though we modelled e as random 

(3)[c|�0, r]=Poi(exp(�0+r)),

(4)[y|�0, z, e, �y ]=NB(exp(�0+ log(e)+z), �y ).

F I G U R E  2   Raw data used for analyses. (a) Ship-days in the 
study area. Hexagons without any ship-days are contained in grey 
background. (b) Northern fur seal counts in each hexagon, where 
zero counts are part of the grey background. (c) Steller sea lion 
counts in each hexagon

Ship−Days
Raw Effort

   1

   2

  10

  30

  70

 333(a)

Northern Fur Seals
Raw Counts

   1

   2

   6

  12

  25

5146(b)

Steller Sea Lions
Raw Counts

   1

   2

  10

  20

  50

11247(c)
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in Equation 3, by conditioning we are treating it as a constant, as in 
Equation 2.

As for Equation 3, we use MCMC methods to sample from the 
posterior distribution [z, �0, �z, �2z , �y |c, e]. Note that we use a two-
stage analysis, where we first model e, condition on it, and then use 
MCMC sampling to integrate over it,

We approximate Equation  5 by sampling from the posterior dis-
tribution of [e |c] while we are sampling from the posterior of 
[z, �0, �z, �

2
z
, �z |y, e]. This idea of composition sampling within MCMC 

has also been used in, for example, Banerjee et al. (2008), Hooten et al. 
(2010) and Babcock et al. (2015). Intuitively, this passes along all uncer-
tainty in e. Because we draw from e independently, note that we are 
making the assumption that e is independent of z, which we believe 
is reasonable, or at least approximately, and it is the only way to make 
progress without joint modelling. Again, we considered flat priors for 
−∞ < 𝛽0 < ∞, 0 < 𝜎2

z
< ∞, 0 < 𝜈2

z
< ∞ and 0 < 𝜌z < 1.

It would also be possible to use a negative binomial distribution 
(or other count distribution) in Equation 3, and a Poisson distribution 
in Equation 4. Figure 2b shows that counts range from 0 to 5,146 for 
northern fur seals, and from 0 to 11,747 for Steller sea lions, and are 
highly overdispersed, even with a spatial random effect. We tried 
both distributions, and the inclusion of � was far from ∞ for both spe-
cies, so we present the negative binomial results. At � = ∞, the first 
two moments are equivalent for negative binomial and Poisson (Ver 
Hoef and Boveng, 2007), so we should choose the simpler Poisson 
model. The posterior distribution for � was very large when model-
ling ship-days, so a Poisson distribution was used.

2.2 | Computing on the posterior distribution

One of the reasons that we chose MCMC sampling is that we want 
samples from the full joint distribution of all parameters, which will 
allow us to compute functions of interest from the whole spatial 
surface. Because we have MCMC samples of the whole surface, we 
also have MCMC samples of any quantity computed on that whole 
surface. Hence, we easily obtain standard errors and uncertainty 
quantification when computing on the posterior distribution of the 
spatial surface.

We give two examples where we compute on the joint posterior 
distribution of the spatial surface. The first is to compute the total 
number of animals in the DEA (described in Section 1.2). Let �i be the 
true expected number of animals in hexagon i. Then

is ‘standardized relative abundance’ (SRA). Note that if the total abun-
dance is known, T =

∑
�i, then T� ∗

i
= �i allows the recovery of each 

hexagon’s abundance from a total abundance estimate and SRA. From 
Equation 4, let �i = exp(�0 + Zi), which is expected counts per unit 
effort in the ith hexagon. A reasonable assumption is that �i is propor-
tional to �i; �i = ��i. We standardize {�i},

which allows for recovery of each hexagon’s abundance if we have a 
separate total abundance estimate, �i = T� ∗

i
= T� ∗

i
. The MCMC sam-

ple from Equation 5 provides a sample from the posterior distribution 
of [� |y], where � = exp(�0 + z), which is the expected number of an-
imals per hexagon for a single ship-day, back on the nominal scale. If 
we have a posterior distribution for T, then sampling from posteriors of 
both T and � ∗

i
 provides a sample of the posterior for the abundance in 

each hexagon, and MCMC allows a sample from their joint distribution 
as well. Turning to the DEA, let 𝒜 = {⋫, ⋬, …, 𝒩} be the set of indexes 
for all hexagons, and let ℳ ⊂ 𝒜 be the set of indexes for the DEA. Then 
� =

∑
i∈ℳ�i is the total number of animals in the DEA. Let � ∗

i,k
 be the 

kth MCMC sample for � ∗
i
. Then the kth MCMC sample for the poste-

rior distribution of abundance within the DEA is

depending on whether T is fixed, or Tk is the kth MCMC sample for 
T. Inferences, such as mean, median, mode, standard deviation, 
credible intervals, etc., can be obtained from {�̂k ; k = 1, …, K} 
for K MCMC samples. Thus, although modelling counts with an 
effort offset does not yield true abundance per hexagon, it can 
be a key piece of information if a total abundance estimate is 
available.

As a second example of computing on the joint posterior dis-
tribution, consider the idea of trying to obtain ‘certain hotspots’ 
of animal abundance, which accounts for areas where we are 
certain abundance is above average, and discounts areas where 
abundance estimation may be high, but highly uncertain. To 
help visualize areas of higher abundance, it is generally desir-
able to perform some amount of smoothing. Let �� ⊂ � be the 
set of indexes in some neighbourhood of hexagon i, including i. 
Neighbourhoods could be those hexagons within a certain radius, 
or a fixed number of nearest neighbours, etc. Then a smoothed 
value at location i is

where |�� | is the number of neighbours. Using the kth MCMC poste-
rior sample of �j,k for the jth hexagon, we obtain the kth MCMC sample 
si,k for si. Take the mean of the MCMC samples for each i; call it si, and let 
the ordered values, from smallest to largest, be denoted s(1), s(2), …, s(N)

. Let q be a quantile of interest, say 0.95. Then {s([qN]), s([qN]+1), …, s(N)} 
are the top 5% of sites with the highest estimated abundance, where 
[a] rounds up. Let �i be the standard deviation among MCMC samples, 

(5)[z, �0, �z, �
2
z
, �z|y, c]=∫ [z, �0, �z, �2z , �z|y, e][e|c]de.

� ∗
i
=

�i∑
N
i= 1

�i

(6)�∗
i
=

�i
∑N

i=1
�i

=
�i

∑N

i=1
�i

=�∗
i
,

(7)�̂k =T
∑

i∈ℳ

�∗
i,k
, or�̂k =Tk

∑

i∈ℳ

�∗
i,k

(8)si =

∑
j∈��

�j

����
,



1916  |    Methods in Ecology and Evolu
on VER HOEF et al.

si,k, for each i, and let �(1), �(2),…, �(N) be {�i} in the same order as 
s(1), s(2),…, s(N). Then

can be viewed as standard normal values, which will be large when si is 
high and �i is low, and, if sufficiently large, we can be certain a site has 
above-average abundance. Cutoff values can be computed by compar-
ing each value in Equation 9 to a quantile in the standard normal distri-
bution. A cutoff can be proposed, and only values above the cutoff are 
claimed to be ‘certain hotspots’. For example, an �-level of 0.95 yields 
the familiar 1.96 as a cutoff value. However, correcting for 11,424 pos-
sible comparisons, and using the conservative Bonferroni adjustment 
for multiple comparisons, we obtain a cutoff value of 4.59. We declare 
any value in Equation 9 above 4.59 to be a certain hotspot. Of course, 
many other options exist for creating various thresholds of interest.

2.3 | MCMC overview

We used MCMC methods to obtain samples from the posterior dis-
tribution for all parameters and latent random effects. Here, we give 
the broad outline of our MCMC sampling scheme, which contained 
some innovations. More details are given in the Supplementary 
Material. The models in Equations 3 and 4 are substantially the same, 
so we write the problem generically as sampling from the hierarchi-
cal model, 

where [y |� , zo , �] is a count model with E[y] = exp(� + zo) and possi-
bly an extra parameter �, [(z′

o
, z′

m
)′ |W, M, �, �] is a multivariate normal 

distribution with a CAR model covariance matrix � = �2(I − �W)− 1M

, and [�][�][�] are prior distributions. Adding effort, using its posterior 
distribution, was described for Equation 5, and because it does not 
require MCMC updating (its regression coefficient is fixed at one), 
we ignore it here. Note that the dimension of y is not the same as z. 
Therefore, it will be necessary to split z = (z�

o
, z�

m
)� into hexagons with 

observed data zo, and missing data zm. Moreover, there is an issue about 
what are zeros, and what are missing values. Originally, [y |� , zo , �] has 
no zeros. For ship-days (effort), there are only hexagons with at least 
one ship-day, and for animals, there are only hexagons where at least 
one animal was counted (Figure 2). So one problem is where to add 
zeros, which we mentioned in the Introduction. We discuss our spe-
cific approaches while giving examples. Second, even when zeros have 
been added, there will still be hexagons with missing data.

Our hierarchical model leads to the following posterior distribu-
tion, [� , zo , zm, �, �, � |y, W, M], and we discuss Metropolis–Hastings 
sampling from the conditional distribution for each quantity in turn.

•	 [� |zo , zm, �, �, �, y, W, M] We use a Metropolis step involving 
the ratio [y |� ∗ , zo , �]∕[y |� , zo , �], where � ∗ is a proposal from a 

symmetric distribution.
•	 [� |� , zo , zm, �, �, y, W, M] We use a Metropolis step involving the 

ratio [y |� , zo , � ∗ ]∕[y |� , zo , �], where � ∗ is a proposal from a sym-
metric distribution.

•	 [zo |� , zm, �, �, �, y, W, M] We use a Metropolis step involving the 
ratio 

where z ∗
o
 is a batch proposal by adding small, independent normal in-

crements to the current values of zo. It would be more typical to sample 
each zi |z−i ,… one-at-a-time, where z−i contains all the rest of {zj ; j ≠ i}, 
as this derives directly from the conditional definition of the CAR model. 
Although no matrix inverses are required, this is still quite slow, looping 
through all 11,424 hexagons for a single MCMC sample. The evalua-
tion of [y |� , zo , �] is very fast because all yi are assumed conditionally 
independent. Note that, in the multivariate normal distribution for all 
z, zo occurs only in exp( − z�− 1z∕2), where �− 1 = M

− 1(I − �W)∕�2

, and W is a sparse matrix and the only inverse required is M− 1, which 
is diagonal, making matrix computations fast, with less storage. In the 
Appendix, we show how that sparse structure can be maintained, even 
when splitting z = (zo , zm). A single batch update is then very fast, and 
although the independent increments need to be very small for ac-
ceptance, thousands can be proposed in the time it takes for a single 
MCMC loop when sampling one-at-a-time. Additionally, we assumed a 
truncated multivariate normal distribution, rather than the usual multi-
variate normal distribution, and we explain why next.
•	 [zm |� , zo , �, �, �, y, W, M] All zm are contained only in the mul-

tivariate CAR model, so we could use Gibbs sampling one-at-
a-time, directly using the definition of a CAR model. However, 
batch sampling with Metropolis was faster, as described above. 
Additionally, we noticed that the MCMC sampler for missing val-
ues, especially, was unstable when there were many missing val-
ues, lots of zeros and high overdispersion. The reason is that the 
model can always fit the zeros better by making Zi, correspond-
ing to an observed yi = 0, more and more negative in exp(� + z)

, and adjusting � downward so the larger values of z still fit the 
observed yi > 0. This drives the overall variance up for z. Missing 
data are not anchored by observed values, and the larger variance 
in z occasionally leads to extremely large (unrealistic) values after 
exponentiation, for some exp(� + Zi) with missing values. Similar 
results were found by Conn et al. (2015b) and Higham (2019). We 
tried a narrow prior on �2, but this did not solve the problem, as 
it was sensitive to the prior, and individual Zi could still get very 
large when exponentiated. Truncating the Z-values was a simple 
solution. It still allowed good fits to the data, it was relatively 
robust to the truncation limit, and it was easy and fast to make 
proposals from a truncated multivariate normal distribution. Thus, 
ultimately, we did not use a typical CAR multivariate normal distri-
bution, but rather one that was truncated. Truncation was easy to 
implement in our framework because it only involved renormaliz-
ing the distribution, and the renormalization constant cancelled in 

(9)
{

s([qN])

�([qN])
,
s([qN]+1)

�([qN]+1)
,…,

s(N)

�(N)

}

[y |� , zo , �][(z′o , z
′
m
)′ |W,M, �, �][�][�][�],

(10)
[y|� , z∗

o
, �][z∗

o
|zm,W,M, �, �]

[y|� , zo , �][zo|zm,W,M, �, �]
,
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the Metropolis ratio for MCMC (Equation 10) when sampling zo, 
and in the ratio [z ∗

m
|zo , W, M, �, �]∕[zm |zo , W, M, �, �] when sam-

pling zm.
•	 [� |� , z, �, �, y, W, M]. Sampling for z only involves the exponent 

in the (truncated) multivariate normal distribution, exp( − z��− 1z)

, and for CAR models, no matrix inverses are necessary. However, 
� is contained in both �− 1 and the determinant |� | of a multivar-
iate normal distribution. Therefore, for each MCMC iteration, 
we needed to compute |� |, which was very time consuming for 
an 11, 424 × 11, 424 matrix. Instead, we pre-computed |� | for 
logit(�) = ( − 40, − 39, …, 39, 40)∕5 in |�2(I − �W)− 1M |. Special 
methods exist for determinants of sparse matrices, and because of 
relations between determinants and inverses, the 81 determinants 
only took a few minutes, and were stored as a look-up table during 
MCMC sampling. Thus, � was only sampled on the grid of values, 
logit(�) = ( − 40, − 39, …, 39, 40)∕5, with pre-computed deter-
minants, and the Metropolis ratio [z |W, M, �, � ∗ ]∕[z |W, M, �, �] 
could be rapidly evaluated with proposal � ∗. The proposed � ∗ was 
chosen by sampling the three nearest values on either side of the 
current value of �, all with equal probability, from the set with pre-
computed determinants. If the current value of � was near either 
endpoint, so that it did not have three values above or below it, we 
used Hastings sampling due to the asymmetric proposal.

•	 [� |� , z, �, �, y, W,M] Typically, � could be sampled with an inverse-
chi-squared distribution (Gelman et al., 2013) because it only oc-
curs in [z |W, M, �, �]. However, due to truncation changing the 
normalizing constant, we used a Metropolis step involving the 
ratio [z |W, M, �, � ∗ ]∕[z |W, M, �, �], where log(� ∗ ) had a symmet-
ric proposal distribution.

The major innovations in our MCMC scheme were splitting 
z = (z�

o
, z�

m
) and maintaining sparse matrices without the need to com-

pute matrix inverses when batch sampling for the multivariate normal 
distribution, using a truncated normal distribution, and using a look-up 
table for sampling �. These innovations allowed us to draw several 
million samples in just a few hours. We first used a burn-in time, and 
tuned the sampler so that Metropolis acceptance rates were between 
0.2 and 0.5. We then used 2.5 million samples for the final run, re-
taining only one in every 2,500, yielding 1,000 MCMC samples from 
the full posterior distribution. We only kept 1,000 MCMC samples be-
cause we needed to store all 11,424 Z-values for each sample. Note 
that 2.5 million samples were required because batch sampling of zo 
and zm required small steps. However, these draws were very fast, and 
there were only two draws per iteration compared to 11,242 draws for 
the standard one-location-at-a-time sampling for the CAR model. Thus 
there was high autocorrelation for MCMC iterations, so we used many 
iterations that still converged relatively quickly.

We evaluated MCMC convergence using effective sample size 
ESS, (Flegal et al., 2008; Gong and Flegal, 2016) and MCMC standard 
error. The minimum ESS among all z was > 32, which was deemed 
acceptable, as 30 is an often-used criteria for sufficient sample sizes 
when data are independent, likely originating in Student (1908). 
Most ESS for z were much larger than 32.

3  | E X AMPLES

We illustrate our methods by continuing the motivating examples in 
Section 1.2.

3.1 | Results of model fits

We first modelled ship-days (Figure  2a) using Equation  3 with 
MCMC sampling. Prior to MCMC sampling, we needed to add zeros 
to the data (Figure 3a). To add zeros, we used spatial considerations. 
Upon close examination, some hexagons had no animals, of any kind, 
but were completely surrounded by other hexagons with at least 
one ship-day observation. It seems highly likely that a ship passed 
through those empty hexagons surrounded by hexagons with > 0 
ship-days, but no animals were observed, so those remain as missing 
values. However, there are other areas of many connected hexagons 
without any animal observations, and it seems likely that no ships 
passed through those areas, so they receive zero effort (maroon col-
our in Figure 3a). We made the decision to buffer any hexagon with 
an observed ship-day with missing values, as the ship had to travel 
to some adjacent hexagon. However, beyond that, all original missing 
values were turned to zero, yielding Figure 3a.

F I G U R E  3   Effort data and model. (a) Ship-days in the study area, 
where observed counts are the same as Figure 2a, except structural 
zeros have been added. Hexagons with a grey background were 
treated as missing data. (b) Mode of the posterior distribution for 
ship-day for each hexagon using a negative binomial regression 
model with spatial random effects
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After burn-in and tuning for the MCMC sampler, the mean of 
the 1,000 retained samples (from 2.5  million MCMC samples) for 
e = exp(�0 + r) is shown in Figure 3b. The mean of the posterior dis-
tribution for � was >0.99, showing a high amount of autocorrelation. 
This resulted in a fairly smooth map of effort that matches what we 
expect when looking at the raw data (Figure 2a). We also point out 
that use of zeros and missing values had the effect of smoothing. For 
e = exp(�0 + r), no values are exactly zero, reflecting the possibility 
that a ship travelled there but no animals were seen. Buffered hexa-
gons left as missing, but mostly surrounded by zeros, had mean pos-
terior values near zero. However, hexagons that had missing values, 
but were surrounded by hexagons with at least one ship-day, had 
posterior means of nearly one ship-day, or more (depending on the 
counts in the neighbouring hexagons) in the posterior distribution 
(Figure 3b). In summary, our assessment is that Figure 3b is a good 
reflection of effort.

Next, we modelled northern fur seals (Figure  2b) with MCMC 
sampling, using Equation 4 with the posterior of e = exp(�0 + r) as 
an offset. By sampling from the posterior distribution of e during 
MCMC sampling, we obtain the desired posterior distribution 
(Equation 5). Prior to MCMC sampling, we needed to add zeros to the 
data (Figure 2b), which required different spatial considerations than 
we used for ship-days. Here, we decided that if the posterior mean 
of ship-days (effort) was > 1, but no northern fur seals were seen, 
then we would assign a zero (maroon colour in Figure 4a). Otherwise, 
they were left as missing values. This reflects the idea that with suf-
ficient effort, animals that were present had the possibility of being 
seen, but were absent. In other words, when ship-day effort was 
modelled as >1, then a ship was likely present in a hexagon at least 
once, but because a count for a species was missing, we set it to zero. 
We are acting as if we actually had ship tracks, and if we knew a ship 
entered a hexagon but did not see anything, we would record a zero. 
Modelled effort is simply replacing actual ship tracks.

After burn-in and tuning for the MCMC sampler, the mean of 
the 1,000 retained samples (from 2.5  million MCMC samples) for 
exp(�0 + z) is shown in Figure  4b. Note that we set log(e) = 0, so 
Figure 4b represents the expected count per ship-day. The mean of 
the posterior distribution for � was >0.99, indicating a high amount 
of autocorrelation. The map of northern fur seal distribution shows 
the known distribution of northern fur seals during the summer 
months, May–September, where northern fur seals are concentrated 
on the Pribilof Islands in the middle of the Bering Sea during pupping 
(Figure 4b). Our methods have adjusted for effort. For example, the 
area of maximum ship-days was located at the pass in the Aleutian 
Islands which separates the Bering Sea from the Gulf of Alaska 
(Figure 3b). This resulted in quite a few northern fur seal sightings 
near this pass as well (Figure 4a). However, after correcting for ef-
fort, this pass does not have high fur seal concentrations (Figure 4b).

As a second example, we modelled Steller sea lions (Figure 2c), 
using Equation 4 with the posterior of e = exp(�0 + r) as an offset. 
Again, we decided that if the posterior mean of ship-days was > 1

, but no Steller sea lions were seen, that we would assign a zero 
to a hexagon (maroon colour in Figure 5a), otherwise it was left as 

a missing value. After burn-in and tuning for the MCMC sampler, 
the mean of the 1,000 retained samples for exp(�0 + z) is shown 
in Figure  5b, representing the expected count per ship-day. The 
mean of the posterior distribution for � was >0.99, indicating a high 
amount of autocorrelation. The map of Steller sea lion distribution 
shows their known distribution during the summer months, May–
September, which is primarily along the coast of the Gulf of Alaska 
and out into the Aleutian Islands (Figure 5b).

It is also important to understand uncertainty about the maps 
presented in Figures  3 through 5. First, we present the posterior 
standard deviation, hexagon by hexagon, for r in Equation 3. This is 
on the log scale in relation to the data. As we might expect, Figure 6a 
shows standard deviations are lower where we have larger sample 
sizes (more ship-days) and higher around the edges, which is typical 
for spatial models. However, when we look at the posterior standard 
deviation of exp(�0 + r) (Figure 6b), we see the more typical pattern 
for count distributions, where the variance is positively related to 
the mean. We also show the posterior standard deviation, hexagon 
by hexagon, for z in Equation 4 for northern fur seals (Figure 6c) and 
Steller sea lions (Figure  6e). Again, for the random effects, stan-
dard deviations are lowest where values were counted, and high-
est where data were missing, and around the edges. The posterior 

F I G U R E  4   Northern fur seal data and model. (a) Northern fur 
seal counts in the study area, where observed counts are the same 
as Figure 2b, except structural zeros have been added. Hexagons 
with a grey background were treated as missing data. (b) Mode of 
the posterior distribution for northern fur seals per ship-day for 
each hexagon using a negative binomial regression model with 
spatial random effects
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standard deviation of the expected counts, exp(�0 + z), for northern 
fur seals (Figure 6d) and Steller sea lions (Figure 6f) shows the typ-
ical pattern for count distributions, where the variance is positively 
related to the mean. Both types of maps are useful, where the maps 
of R-uncertainty show more certainty with more sampling, while the 
mean-uncertainty shows higher uncertainty with higher means.

3.2 | Results from computing on posterior 
distributions

One of our primary goals was estimating at-sea abundance, by com-
bining an existing abundance estimate with a standardized species 
distribution map (Equation 7). We obtained the most current abun-
dance estimate for northern fur seals from the stock assessment re-
port, which is 620,660 seals (Muto et al., 2018). No standard error 
was presented with the estimate, so we hold it fixed. The mode of the 
posterior density for each grid cell within the DEA provides a spa-
tially explicit map for northern fur seal (Figure 7a). For each MCMC 
iteration, we also summed the abundance estimates for all grid cells 
within the DEA, providing a total estimate for the DEA. A sample 
from the posterior distribution of total northern fur seals in the DEA 

is given as a histogram in Figure 7b. Similarly, we obtained the most 
current abundance estimate for Steller sea lions from the stock as-
sessment report, which is 54,267 sea lions (Muto et al., 2018); no 
standard error was given, so we hold it fixed. The mode of the pos-
terior density for each grid cell within the DEA for Steller sea lion is 
given in Figure 7c, and a sample from the posterior distribution of 
total Steller sea lions in the DEA is given as a histogram in Figure 7d.

Maps, using Equation  8 by smoothing over 50 nearest neigh-
bours, are shown for northern fur seals in Figure 8a, and for Steller 
sea lions in Figure  8c. Standardization of the smoothed values 
(Equation 9), using the highest 10%, and using a Bonferroni-adjusted 
cutoff for an �-level of 0.95, yields ‘certain hotspots’ for northern 
fur seals (Figure 8b) and Steller sea lions (Figure 8d). These match 
our prior experience about areas known to have high abundance for 
both species.

4  | DISCUSSION AND CONCLUSIONS

We used spatial count regression to estimate SDMs for two marine 
mammals in the Gulf of Alaska and Bering Sea. We created a hex-
agonal grid and counted the number of animals per hexagon based 
on presence-only data collected as shipboard observations without 
a pre-specified sampling design. To decrease bias, we first estimated 
a spatial density surface for ship-days, which was our proxy vari-
able for effort. We created zeros for some hexagons that were far 
from hexagons with observed animals, and created missing values 
for those hexagons adjacent to hexagons with observed animals. We 
retained an MCMC sample of 1,000 spatial surfaces from 2.5 million 
iterations from the posterior distribution of ship-days by using spa-
tial Poisson regression with random effects that had a multivariate 
normal distribution with a CAR covariance matrix.

Next, we created SDMs for two species. Here, we created zeros 
for hexagons that had a mean effort of at least one ship-day and 
no observed animals, and any remaining hexagons with no observed 
animals were treated as missing values. We included the effort sur-
face as an offset in spatial negative binomial regression with random 
effects that had a multivariate normal distribution with a CAR co-
variance matrix, and sampled from the posterior distribution of the 
effort surface while retaining 1,000 samples from 2.5 million MCMC 
iterations from the posterior distribution of the SDMs for northern 
fur seals and Steller sea lions.

From the posterior distributions of the SDMs, we computed two 
functions of interest and high importance. We normalized the SDMs 
so that they summed to one, and then applied an overall abundance 
estimate that we obtained from the literature to derive spatially ex-
plicit abundance estimates. These were then summed in a subset of 
the study area, the DEA and the MCMC samples provided a histo-
gram reflecting the posterior distribution of total abundance in the 
DEA. This provided a needed estimate in an area that lacked good 
information until now. The data also identified what we called ‘cer-
tain hotspots’, first by smoothing the spatial posterior distributions, 
dividing each hexagon by the MCMC standard deviation, and then 

F I G U R E  5   Steller sea lion data and model. (a) Steller sea lion 
counts in the study area, where observed counts are the same as 
Figure 2c, except structural zeros have been added. Hexagons with 
a grey background were treated as missing data. (b) Mode of the 
posterior distribution for Steller sea lions per ship-day for each 
hexagon using a negative binomial regression model with spatial 
random effects
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creating thresholds. Hexagons with values above a threshold were 
deemed as hotspots with enough evidence to say that we are certain 
about them. This provides managers with ways to protect critical 
areas for both species.

Analysis of citizen science data requires more assumptions and 
decisions than statistically designed sampling, as often occurs when 
crucial information is missing, so we accumulate and discuss them 
here.

•	 Hierarchical models are highly parametric. We used a Poisson 
or negative binomial distribution for count data, and, on the log 

scale, a multivariate normal distribution with a CAR covariance 
matrix for random effects. Both of these were chosen in part 
for speed and tractability of the ensuing hierarchical model. 
These distributions have been combined often in both space 
e.g., (Mohebbi et al., 2014; Wakefield, 2007) and time e.g., (Chen   
et al., 2016; Zhu, 2011).

•	 We assumed that the ship-days variable was proportional to 
effort, following Himes Boor and Small (2012), and others have 
used a similar idea in a different context, e.g., (Gomes and IJff, S. 
D., Raes, N., Amaral, I. L., Salomão, R. P., de Souza Coelho, L., de 
Almeida Matos, F. D., Castilho, C. V., de Andrade Lima Filho, D., 

F I G U R E  6   Model uncertainty. Standard deviation of each hexagon’s posterior distribution for: (a) Ri in r from Equation 3, (b) exp(�0 + Ri) 
from Equation 3, (c) Zi in z from Equation 4 for northern fur seals, (d) exp(�0 + Zi) from Equation 4 for northern fur seals, (e) Zi in z from 
Equation 4 for Steller sea lions, (d) exp(�0 + Zi) from Equation 4 for Steller sea lions
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and López, D. C., 2018). If effort is dominated by, say, total counts 
of the most abundant species, then the modelling of effort and an 
SDM for that species could be highly confounded, especially for 
the most abundant species. The use of ship-days breaks the direct 
dependence of effort on species counts. That, along with con-
ditioning and marginalization of the SDM on effort (Equation 5) 
decreases, as much as possible, the confounding between effort 
and the SDM. In other words, we do not attempt to model the 
joint distribution of effort and the SDM, but rather treat them 
sequentially.

•	 We had over 55 years of data but used only spatial locations in the 
analysis. Hence, for method development, we assumed that the spa-
tial distribution was constant over years. In defence of this idea, we 
think that most spatial datasets in ecology are actually collected over 
a range of time values; it would be very difficult to collect field data 
at all locations simultaneously, with the exception being remotely 
sensed data and images. However, it is important to consider the 
implications. Spatial distributions likely vary from year to year, and 
this variation is lost when data are compressed over time. Moreover, 
some years have more data than others, so there are unequal year 
effects in the data. Some of these issues can be resolved with spatio-
temporal models (Cressie and Wikle, 2011), but at a large computa-
tional expense. We developed a new MCMC algorithm just to handle 
large spatial data, and our aim is to extend these methods to spatio-
temporal models next. It is an open research problem.

•	 We assumed that detection of animals was spatially constant. 
Absolute detection rate is not an issue for these models, because 
at the modelling stage, we are not trying to estimate true abun-
dance, but rather a count that is proportional to true abundance 
(Equations 3 and 4). Also, any proportional constant cancels from 
the ratio in Equation 6, which allows for estimation of actual den-
sity with a separate estimate of total abundance. If there is in-
formation on variable detection rates, such as habitat, different 
observers, group size, etc., then it could be included in the model. 
We did not have such information, and any variation, so long as 
it was not spatially- patterned, simply got passed on to random 
components of the model, which then increased uncertainty. 
Habitat might create spatially patterned detection, but for our 
data, the visual detection from ships on the ocean is essentially 
unchanging (or it is spatially unpredictable, such as sea condition, 
lighting, etc.), so habitat is a minor concern.

•	 We used hexagons, rather than working with the actual point 
data. It would be more natural to use spatial point process mod-
els (Renner and Warton, 2013; Renner et al., 2015; Warton and 
Shepherd, 2010), but the notion of a random surface leads to log-
Gaussian Cox-process models (Møller et al., 1998), and these are 
difficult and time-consuming to fit (Teng et al., 2017). A CAR model 
as a random effect on a grid is a fast approximation for the spatial 
point process intensity surface (Rathbun and Cressie, 1994), and 
still provides an MCMC sample from the posterior distribution 

F I G U R E  7   Population estimates per 
hexagon in the Gulf of Alaska Density 
Extent Area (DEA). (a) Map of mode of 
the posterior distribution for northern fur 
seal abundance in DEA. (b) Histogram of 
MCMC sample from posterior distribution 
for total abundance of northern fur seals 
in DEA. (c) Map of mode of the posterior 
distribution for Steller sea lions in DEA. 
(d) Histogram of MCMC sample from 
posterior distribution for total abundance 
of Steller sea lions in DEA
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(Besag, 1994). A sensitivity analysis could be performed (Kéry & 
Royle, 2016, p. 415) on hexagon size, and ultimately, the coarsest-
scale grid that meets objectives should be adopted as the fastest 
method. Here, we wanted to show that it is reasonably fast for 
tens of thousands of samples, so we chose a fine-scale grid.

•	 We did not include any covariates. This was a major departure 
from most SDMs, as we reviewed in Section  1. We wanted to 
highlight spatial considerations, especially when adding zeros, 
and focus on the prospect of creating SDMs without the need 
for covariates. Of course, spatial count models for regression can 
easily allow for covariates, in addition to spatial random effects, 
to include the best of both methods, and we will focus on this for 
future research.

•	 We created missing values for the effort (ship-days) data by buff-
ering hexagons with presence-only as missing data, and any hexa-
gons farther away were set as zero. Obviously, other buffering 
rules could be applied. Again, we suggest a sensitivity analysis to 
examine the effect of buffering on missing values and zeros.

•	 We created zeros for species data by using a threshold based 
on the posterior distribution for ship-days, setting a hexagon to 
zero if it had no species counts and a mean posterior value for 
ship-days > 1. All other hexagons that had no species counts were 
treated as missing values. Obviously, thresholds other than one 
ship-day could be tried, and again we recommend sensitivity anal-
ysis to explore the effect of various thresholds.

•	 We used truncation limits of ± 6 for the normal distribution. This 
still allowed for a wide range of mean count values (assuming 
the intercept term is zero), ranging from exp( − 6) = 0.0025 to 
exp(6) = 403 animals per ship-day, which easily encompassed the 
mean values of our two species (Figures 4b and 5b). Larger values 
caused problems with MCMC convergence, and smaller values 
had little effect until truncation limits were less than approxi-
mately ± 4, when they were too restricted to fit the data well. 
Truncation can be tailored to the data at hand.

As seen from above, there are challenges when using presence-
only citizen science data. In addition to modelling effort, there are con-
sequences due to model choice, time effects, detection, spatial scale, 
creating zeros and computation. Virtually all models require some as-
sumptions, and citizen science data often require more. Nevertheless, 
there is information in these data, and it is also a mistake to waste 
information. Our goal is to make appropriate assumptions, inter-
pret cautiously, and, if available, compare to, or combine with, other 
information.

A full data analysis should include model diagnostics, and we 
recommend them here too (Conn et al., 2018). We have focused on 
method development, so we omit sensitivity and model checking. 
However, we did perform the most basic model checks—do the results 
make sense, and are they useful? The certain hotspots (Figure 8a) for 
northern fur seal are centred on the Pribilof Islands, which is the major 

F I G U R E  8   Smoothing and Hotspots. (a) Mode of each hexagon’s posterior distribution after smoothing by averaging over 50 nearest 
neighbours for northern fur seals. (b) Certain hotspots created by combining smoothing, thresholds and uncertainty for northern fur seals. 
(c) Mode of each hexagon’s posterior distribution after smoothing by averaging over 50 nearest neighbours for Steller sea lions. (d) Certain 
hotspots created by combining smoothing, thresholds and uncertainty for Steller sea lions
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breeding centre for all northern fur seals in the eastern Bering Sea, so 
this reflects known distribution for this species. Interestingly, a second 
hotspot shows up just west and south of the eastern-most Aleutian 
Islands, indicating a concentration possibly consisting of animals from 
Russian rookeries, providing interesting new information. The main 
certain hotspots for Steller sea lions (Figure 8b), from left to right, are 
the Seguam, Bogoslov and Shelikof critical habitat foraging areas iden-
tified for Stellar sea lions (Himes Boor and Small, 2012). Two additional 
hotspots show up farther east, near the outside of the Prince William 
Sound and the open ocean side of southern southeast Alaska. Both 
maps confirm known concentrations, but provide further insight on 
species distributions. The histograms for northern fur seal and Steller 
sea lions (Figure 7) are both biologically reasonable according to biolo-
gists familiar with the species and area.

The methods that we have presented offer some advantages 
over existing methods that are used for species distribution model-
ling. There are now many other such methods, too many to compare 
individually. Nonetheless, our method focuses on spatial autocor-
relation for prediction, while most others focus on covariates. Thus, 
our method provides an option when covariates are not easily avail-
able, and this also led us to consider novel ways to create zeros 
when fitting models. We developed a fast way to use exact MCMC 
methods for a latent CAR model, while many other methods use ap-
proximations. We also showed how to normalize any relative density 
surface that, when combined with an overall abundance estimate, 
can provide a spatial probability density surface for estimating abun-
dance in any small area. These advantages come with some disad-
vantages as well. To make progress, we relied on many assumptions 
that were discussed above, and while our computing algorithms are 
fast, full MCMC still requires considerable time to fit models and 
store output.

The methods presented here can extend easily to other citizen 
science data. Our data contained counts, but Equation 3 could be a 
Bernoulli distribution, binomial distribution, negative binomial dis-
tribution, etc., depending on the type of citizen science data, with 
only a small change in MCMC sampling. Likewise, covariates could 
be added to Equations 3 and 4. In order create an effort surface sim-
ilar to our methods, a dataset would need to be collected on many 
species, and the idea of a ship-day would need to be modified to 
some variable from the whole dataset that is a good proxy for effort. 
Other literature modelling species occurrence that also accounts for 
effort includes van Strien et al. (2013) and Dennis et al. (2017).

We have improved on the methods used in Himes Boor and 
Small (2012) by using spatial considerations to provide complete 
maps with smoothing. With some reasonable assumptions, proper 
models, efficient computing techniques, and a set of analytical deci-
sions, we were able to take presence-only data, along with an overall 
abundance estimate for each species, and provide spatially explicit 
abundance estimates, with uncertainties, in a remote part of the 
Gulf of Alaska with no designed survey effort. This presents a novel 
approach to presence-only data to answer important management 
questions that depend on spatially explicit information. We stress 
that surveys designed to provide unbiased population estimates are 

always preferred but our approach provides important information 
to natural resource managers when directed scientific survey effort 
is unavailable.
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